Po­lar or Non­po­lar – That is the Ques­ti­on

Po­la­ri­ty is one of the fun­da­men­tal pro­per­ties of mole­cu­les. It de­ter­mi­nes, for ex­am­p­le, the sub­s­tances in which a mole­cu­le can dis­sol­ve. This, in turn, im­pacts the choice of re­se­arch me­thods and in­stru­ments, ul­ti­m­ate­ly in­fluen­cing the re­sults and the con­clu­si­ons drawn from them. While it might seem like a straight­for­ward pro­cess – start­ing with iden­ti­fy­ing po­la­ri­ty and en­ding with re­se­arch re­sults – the ana­ly­sis must of­ten be re­pea­ted mul­ti­ple times for com­pounds of va­ry­ing po­la­ri­ties, such as li­pids, to en­su­re that each ana­ly­te is pro­per­ly io­ni­zed. In this ar­tic­le, you’ll learn more about the con­cept of mole­cu­lar po­la­ri­ty, li­pids spe­ci­fi­cal­ly, and the chal­lenges en­coun­te­red in stu­dy­ing them.

The Po­la­ri­ty of Mole­cu­les

When se­ve­ral atoms bond tog­e­ther to form a mole­cu­le or a group of atoms, dif­fe­ren­ces in elec­tro­ne­ga­ti­vi­ty among the atoms can lead to shifts in char­ge dis­tri­bu­ti­on. A clas­sic ex­am­p­le of a po­lar mole­cu­le is wa­ter: H2O. The oxy­gen atom has a hig­her elec­tro­ne­ga­ti­vi­ty (the elec­tro­ne­ga­ti­vi­ty va­lues of ele­ments can be found in the pe­ri­odic ta­ble) than the two hy­dro­gen atoms and the­r­e­fo­re at­tracts their elec­trons. As a re­sult, the oxy­gen atom de­ve­lo­ps a par­ti­al ne­ga­ti­ve char­ge, while the hy­dro­gen atoms car­ry par­ti­al po­si­ti­ve char­ges. This crea­tes a per­ma­nent elec­tric di­po­le mo­ment, ma­king the en­ti­re mole­cu­le po­lar. In con­trast, non­po­lar mole­cu­les lack such a per­ma­nent di­po­le mo­ment and ex­hi­bit litt­le to no par­ti­al char­ge dif­fe­ren­ces. It’s im­portant to note that the tran­si­ti­on from po­lar to non­po­lar is gra­du­al and de­pends on the elec­tro­ne­ga­ti­vi­ty dif­fe­ren­ces bet­ween the bon­ding part­ners.

Like Dis­sol­ves Like

When po­lar sub­s­tances are com­bi­ned with po­lar sol­vents, the dif­fer­ent­ly char­ged parts of the mole­cu­les at­tract each other, brea­king down pre­vious­ly sta­ble struc­tures. In non­po­lar sub­s­tances, whe­re no per­ma­nent di­po­le mo­ment exists, the con­stant mo­ve­ment of elec­trons around the nu­cleus ge­ne­ra­tes brief char­ge shifts. This al­lows non­po­lar sol­vents to in­ter­act with the­se struc­tures th­rough elec­tro­ma­gne­tic at­trac­tion and re­pul­si­on, brea­king down the chains and crea­ting a ho­mo­ge­neous mix­tu­re.

Po­la­ri­ty and Sol­vent De­ter­mi­ne Io­niza­ti­on

The choice of sol­vent – for ex­am­p­le wa­ter for po­lar sub­s­tances or ace­to­ni­tril for non­po­lar sub­s­tances – great­ly in­fluen­ces the io­niza­ti­on me­thod used in mass spec­tro­me­try. In the ar­tic­le ‚By Io­niza­ti­on Only‘, you can learn more about stan­dard io­niza­ti­on me­thods for both po­lar and non­po­lar sub­s­tances. While po­lar mix­tures are ty­pi­cal­ly spray­ed as small dro­p­lets and sub­se­quent­ly io­ni­zed by elec­tro­spray io­niza­ti­on (ESI), in LC-MS non­po­lar mix­tures are usual­ly va­po­ri­zed and io­ni­zed via at­mo­sphe­ric pres­su­re che­mi­cal io­niza­ti­on (APCI), or pho­to io­niza­ti­on (APPI). In the lab, this me­ans that dif­fe­rent ion sources are nee­ded for dif­fe­rent sub­s­tances, re­qui­ring eit­her mul­ti­ple in­stru­ments or the re­con­fi­gu­ra­ti­on of sources by lab per­son­nel.

Li­pids: Both Po­lar and Non­po­lar

Re­se­arch on li­pids is espe­ci­al­ly si­gni­fi­cant in the field of me­ta­bo­lo­mics. [Learn more about li­pids and me­ta­bo­lo­mics in re­cent­ly pu­blished blog ar­tic­les.] A uni­que aspect of this class of com­pounds is that the­re are do­zens of dif­fe­rent ty­pes of li­pids, some of them are po­lar, others non­po­lar. For a com­pre­hen­si­ve stu­dy of li­pids, one would eit­her need two dif­fe­rent ion sources – one for po­lar sub­s­tances and an­o­ther for non­po­lar ones – or uti­li­ze SICRIT®: a sin­gle source uni­que­ly de­si­gned to io­ni­ze both po­lar and non­po­lar sub­s­tances.

  • SICRIT® is ca­pa­ble of co­ve­ring the io­niza­ti­on ran­ge of APCI wi­t­hout ma­jor sen­si­ti­vi­ty draw­backs.
  • SICRIT® can ne­ar­ly co­ver the en­ti­re io­niza­ti­on ran­ge of EI (ex­clu­ding re­si­du­al ga­ses like N2, O2, etc.) wi­t­hout sen­si­ti­vi­ty is­sues.
  • SICRIT® can co­ver a lar­ge por­ti­on of the ESI io­niza­ti­on ran­ge up to an m/z ra­tio of 2000 (ex­clu­ding lar­ge bio­mole­cu­les like pro­te­ins).

SICRIT® and Li­pids

In re­cent ap­pli­ca­ti­on no­tes, we ex­plo­re li­pid ana­ly­sis using our LC mo­du­le. In the app note ‚LC-SICRIT®-HRMS Ana­ly­sis of Non-Po­lar Li­pids fea­turing Shi­madzu Ne­xera LC and 9030 LC-MS QToF‘, we de­mons­tra­te SICRIT®’s abili­ty to io­ni­ze eight dif­fe­rent tria­cyl­gly­ce­ri­des with mi­ni­mal mole­cu­lar frag­men­ta­ti­on, en­ab­ling sub­s­tance iden­ti­fi­ca­ti­on via Shi­madzu soft­ware

In the app note ‚Li­pi­do­mics De­coded: Tar­ge­ted As­sign­ment of Po­lar Li­pids using the SICRIT® LC-Mo­du­le‘, we show that SICRIT® can also io­ni­ze a wide ran­ge of po­lar li­pids using a stan­dard ESI work­flow, with iden­ti­fi­ca­ti­on fa­ci­li­ta­ted by an MS stan­dard li­bra­ry.

Mo­reo­ver, with a ther­mal de­sorp­ti­on unit, SICRIT® opens up the pos­si­bi­li­ty of crea­ting a person’s li­pi­do­mic pro­fi­le, of­fe­ring fo­ren­sic sci­ence a new ap­proach to in­di­vi­du­al iden­ti­fi­ca­ti­on.

For SICRIT®, po­lar or non­po­lar is no lon­ger a ques­ti­on.

If you would like to learn more about SICRIT® in the ana­ly­sis of li­pids wi­thin the field of me­ta­bo­lo­mics, we en­cou­ra­ge you to sign up for our free web­i­nar.